Photoreactive Molecular Complex of 2,5-Distyrylpyrazine and Ethyl 4-[2-(2-Pyrazinyl)ethenyl]cinnamate. Formation of Perfectly Ordered Polymer Composite by Crystalline-State Photopolymerization

Masaki Hasegawa,".† Kazushi Kinbara, ${ }^{\ddagger}$
Yutaka Adegawa, ${ }^{\ddagger}$ and Kazuhiko Saigo*: ${ }^{\circ}$

> Department of Materials Science and Technology Faculty of Engineering. Toin University of Yokohama Kurogane-cho. Midori-ku, Yokohama 225, Japan Department of Synthetic Chemistry Faculty of Engineering. The University of Tokyo Hongo, Bunkyo-ku. Tokyo 113. Japan

Received November 20. 1992
Cocrystals have been attracting much attention in the field of organic solid-state chemistry, including CT complexes in superconductivity and inclusion complexes in molecular recognition. ${ }^{1}$ We have recently reported on the formation of a mixed crystal from a couple of diolefinic compounds, which gave a random copolymer by repeating topochemical [$2+2]$ photocycloaddition. ${ }^{2}$ In contrast, a regulated polymer is expected to be formed by the topochemical $[2+2]$ photopolymerization of a molecular complex of a couple of diolefinic compounds with an ordered molecular arrangement in the crystal. Here we report on the first example of the topochemical photoreaction of a molecular complex to afford a perfectly ordered polymer composite.

Each of 2,5-distyrylpyrazine (1) ${ }^{3}$ and ethyl 4-[2-(2-pyrazinyl)ethenyl]cinnamate (2) ${ }^{4}$ has been found to give a crystalline polymer upon UV irradiation in the crystalline state, respectively (Scheme I). On the other hand, when an equimolar mixture of 1 and 2 was recrystallized from benzene, very thin, platelike yellow crystals deposited. The 'H-NMR spectrum of the crystal showed that it comprised $\mathbf{1}$ and $\mathbf{2}$ in a molar ratio of $1: 2$. This composition ratio in the crystal was not affected upon changing the molar ratio of 1 and 2 in solution in a range from 1:1 to $1: 5$. In the differential scanning calorimetric curve of this crystal, a single endothermic peak was observed at $166^{\circ} \mathrm{C}$, which is different from the melting point of either $1\left(223{ }^{\circ} \mathrm{C}\right)$ or $2\left(156{ }^{\circ} \mathrm{C}\right)$. Furthermore, the X-ray powder diffraction pattern of the crystal was quite different from those of the homocrystals 1 and 2. From these results, it is suggested that the crystal, obtained by recrystallization of a mixture of $\mathbf{1}$ and $\mathbf{2}$ from benzene, is not a simple blend but a cocrystal of $\mathbf{1}$ and 2 with a molar ratio of $1: 2$.

Upon irradiation with a $500-\mathrm{W}$ super-high-pressure mercury lamp, cocrystal $\mathbf{1 . 2}$ afforded a crystalline polymer ($\eta_{\text {inh }}=1.0$ dL / g : trifluoroacetic acid). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the polymer revealed that all of the olefin bonds were converted into cyclobutane rings through [$2+2$] cycloaddition and perfectly coincided with that of a $1: 2$ mixture of poly- 1^{3} and poly-2. ${ }^{4}$ Partially dimerized photoproduct crystal was obtained when cocrystal $\mathbf{1 . 2}$ was irradiated with wavelengths longer than 410 nm , which excite only the monomers. In the dimer crystal, only 1-dimer and 2 -dimer were detected by high-performance liquid chromatography (HPLC), but the corresponding cross dimer consisting of $\mathbf{1}$ and $\mathbf{2}$ was not detected at all. These observations

[^0]

Figure 1. ORTEP drawing of complex $\mathbf{1 . 2}$ viewed along the b-axis. The black and white molecules are on the same plane, respectively, and are related with a glide mirror plane.

Scheme I

by ${ }^{1} \mathrm{H}-$ NMR and HPLC indicate that the photoproduct, obtained from cocrystal 1.2, is not a copolymer but a mixture of poly-1 and poly-2.
The X-ray crystallographic analysis of the cocrystal was performed (Figure 1). ${ }^{5}$ In cocrystal 1-2, both of 1 and 2 formed columns separately along the c-axis with sheets perpendicular to the a-axis related by a glide mirror plane. This result indicates that cocrystal $\mathbf{1 . 2}$ is not a mixed crystal with a disordered molecular arrangement but a "molecular complex" with an ordered molecular arrangement. The shortest distances from the carbon-carbon double bond of $\mathbf{2}$ in a certain layer to those of 1 and 2 in the neighboring layers are 7.202 and $6.655 \AA$, respectively, which are too far for 1 and 2 to react each other. ${ }^{6}$ On the other hand, the distances between the neighboring carboncarbon double bonds in the same layer are $3.934 \AA$ in the column of $\mathbf{1}$ and 4.013 and $3.976 \AA$ in the column of 2, respectively, and are within the limit allowed for topochemical [2 +2] cycloaddition. ${ }^{6}$ Taking into account the distances between the neighboring carbon-carbon double bonds and the preservation of the

[^1]

Figure 2. Schertatic represcntation of the photoproduct of compiex t-2. Biack and white rods represcnt single polymer chains of poly- 9 and poiy2, respectively. Three arrows represent the direction of the $\alpha-, b$, and c-axes of the original complex before irradiation.
crystallinity during the photoreaction, the polymerization would proceed along the α-axis upon photoirradiation to give a perfectly ordered (alternately layered) crystalline polymer composite; in other words, the polymer crystal should comprise an alternating monolayer of poly- $\mathbf{1}$ and a bilayer of poly- 2 as shown schematically in Figure 2.

Complex 1.2 was also obtained by simple grinding of homocrystals 1 and 2 . When 1 and 2 equimolar amounts of 2 were ground with an agate mortar and a pestle for 60 min , followed by standing for 1 week at room temperature, the formation of the complex became detectahle in the X-ray powder diffraction pattern, as is observed for a couple of diolefinic compounds reported in a previous paper. ${ }^{\text { }}$ The photoirradiation of the mixture gave the same ordered polymer composite of poly-1 and poly-2.

The alignment of $\mathbf{1}$ and $\mathbf{2}$ in each column is quite similar 10 that in each of the homocrystals. Consequently, the formation of the complex may readily occur wtih the high tendency of the column of 1 penetrating in the crystal of $2 .{ }^{\text {b }}$ Similar columned

[^2]stacking structures of two components have been reported for CT complexes; "1t the driving force for the complex formation is usually attributed 10 strong interaction(s) between the two components such as electrostatic interaction, charge-transfer interaction, and/ or hydrogen bonding." However, 1 he growth of cocrystal 1.2 in the direction of the a-axis is very slow; the interaction between the neighboring columns is very weak. The IR spectrum of complex $1-2$ showed the absorption due to carbonyl stretching 7 cm^{-1} lower than that of homocrystal $2\left(1705 \mathrm{~cm}^{-1}\right)$. This difference may arise from the enhanced interaction between the carbonyl group in 2 and the hydrogen of 1 he phenyl group of $\mathbf{1}$, since the aromatic hydrogen is the closest to the carbonyl oxygen, which was ascertained on the basis of the X-ray crystallographic analysis. This interaction is, therefore, the most probable interaction between the columns of 1 and 2 to produce complex 1-2. However, the interaction would be quite weaker than an ordinary $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=$ hydrogen bonding ${ }^{12}$ since the aromatic hydrogen is not directed to the lone pair of the oxygen, although the distance between the carbonyloxygen and the aromatic profon is $2.60 \AA$ and the $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}=$ angle is 138.0°.

This is the first example of a photoreactive complex affording an alternating layered polymer composite.

Acknowledgmens. The present work was supported by Grant-in-Aid for Scientific Research No. 02403021 from the Ministry of Education, Science and Culture and by the Tokuyama Science Foundation.

Supplementary Material Availahle: Crystallographic details for the complex $1 \cdot 2$, including tables of atomic coordinates, thermal parameters, bond angles, and bond lengths, and a table of distances between carbons of double bonds in the range 3.58. $5 \AA$ (10 pages). Ordering information is given on any current masthead page.
(9) SaSada, Y.; Nakanishi. H.; Hasegawa, M. Bunl. Chem. Soc. Jpn. 9975, 44. 1262.
(10) Desiraiu, G. R. Crystal Engineering. The Destgn of Organic Solids; Eisevicr: Amsterdam, 1989; Chapter 7 and references therein.
(ii) Wright, J. D. Molecular Crystals; Cambridge Uiniversity Press: Cambridge, 1987.
(12) Desiraju, G. R. Crysrol Engineering: The Design of Orgonic Solids; Elsevier: Amsterdam, 1989; Chapter 5 and references iherein.

[^0]: + Toin University of Yokohama.
 ${ }^{\ddagger}$ The University of Tokyo.
 (1) (a) Desiraju, G. R. Crystal Engineering. The Design of Organic Solids: Elsevier: Amsterdam, 1989; Chapter 9. (b) Kitaigorodskii, A. I. Molecular Crystals and Molecules; Academic Press: New York 1973; pp 94-130.
 (2) Maekawa, Y.i Lim, P.-J.i Saigo, K.i Hasegawa, M. Macromolecules 1991, 24, 5752.
 (3) Hasegawa, M.; Suzuki, Y.i Suzuki F.i $_{1}$ Nakanishi, H. J. Polym. Sci. Part A-l 1969, 7, 743.
 (4) Hasegawa ${ }_{1}$ M.i Aoyama $_{1} \mathbf{M .}_{\cdot i}$ Maekawa $_{1} Y_{\cdot i}$ Ohashi $_{1} Y$.Macromolecules 1989, 22, 1568.

[^1]: (5) The crystal data of the complex: space group $P 2_{l} / c$ with $a=30.380(5)$ $\AA_{1} b=9.629(2) \AA_{1} c=7.494(1) \AA_{1} \beta=91.28(1)^{\circ}, V=2191.6(7) \AA^{3}$, and $Z=4\left(d_{\text {calcd }}=1.25 \mathrm{~g} / \mathrm{cm}^{3}\right.$). A total of 3265 reflections (maximum 2θ of 120°) were collected at room temperature on a Mac Science MXC18 diffractometer using the $2 \theta-\omega$ scan method. The structure was solved by direct methods (MULTAN78) and refined with 1713 reflections ($\left|F_{0}\right|>3 \sigma$ $\left(\left|F_{\mathrm{o}}\right|\right)_{\mathrm{I}} \mathrm{GOF}=0.98_{1} R=0.088_{1} R_{\mathrm{w}}=0.102$.
 (6) Cohen, M. D.i Schmidt, G. M. J. Chem. Soc. 1964, 1996.

[^2]: (7) Kinbara, K.; Adegawa, Y.; Saigo, K.; Hasegawa, M. Bull. Chem. Soc. $J p n$, in press.
 (8) The latice constants of $\mathrm{t}:{ }^{4} \mathrm{~Pb} b \mathrm{a}, \mathrm{o}=20.638 \mathrm{~A}, b=9.599 \mathrm{~A}, \mathrm{c}=7.655$ \AA. The latice Constants of $2:^{4} P 2, / r, a=20.834 \AA, b=9.479 \AA, 1^{\prime}=7.387$ $\mathrm{A}, \beta=96.75^{\circ}$. It is noteworthy that the cell parameters of 9 and 2 are very similar to cach other and that the a-axis of thecomplex is just one and one-balf limes as long as that of 2.

